Developmentally regulated and non-sex-specific expression of autosomal dmrt genes in embryos of the Medaka fish (Oryzias latipes)

نویسندگان

  • Christoph Winkler
  • Ute Hornung
  • Mariko Kondo
  • Cordula Neuner
  • Jutta Duschl
  • Akihiro Shima
  • Manfred Schartl
چکیده

The dmrtgene family of vertebrates comprises several transcription factors that share a highly conserved DNA-binding domain, the DM domain. Like some of their invertebrate counterparts, e.g. Drosophila doublesex (dsx) and the Caenorhabditis elegans Mab3, several are implicated in sex determination and differentiation. Thus far, dmrt genes represent the only factors involved in sexual development that are conserved across phyla. In the teleost Medaka (Oryzias latipes), a duplicated copy of dmrt1, designated dmrt1bY or dmy, has recently been postulated to be the master regulator of male development in this species. Here, we have analyzed the expression of four additional Medaka dmrt genes during embryonic and larval development. In contrast to other vertebrates, the autosomally located dmrt1a gene of Medaka is not expressed at detectable levels during embryogenesis. On the other hand, dmrt2, dmrt3 and dmrt4 show highly restricted and non-overlapping expression patterns during embryogenesis. While dmrt2 is expressed in early somites, dmrt3 transcripts are found in dorsal interneurons and dmrt4 is expressed in the developing olfactory system. Other than in mouse, they do not show any sex specific expression and no transcription could be detected in the early developing gonads. However, all four analyzed dmrt genes share expression in the differentiating gonad of larvae and in adult testis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rspo1-activated signalling molecules are sufficient to induce ovarian differentiation in XY medaka (Oryzias latipes)

In contrast to our understanding of testicular differentiation, ovarian differentiation is less well understood in vertebrates. In mammals, R-spondin1 (Rspo1), an activator of Wnt/β-catenin signaling pathway, is located upstream of the female sex determination pathway. However, the functions of Rspo1 in ovarian differentiation remain unclear in non-mammalian species. In order to elucidate the d...

متن کامل

A comparative view on sex determination in medaka

In fish, an amazing variety of sex determination mechanisms are known, ranging from hermaphroditism to gonochorism and from environmental to genetic sex determination. This makes fish especially suited for studying sex determination from the evolutionary point of view. In several fish groups, different sex determination mechanisms are found in closely related species, and evolution of this proc...

متن کامل

Sex determination in fish: Lessons from the sex-determining gene of the teleost medaka, Oryzias latipes.

Although sex determination systems in animals are diverse, sex-determining genes have been identified only in mammals and some invertebrates. Recently, DMY (DM domain gene on the Y chromosome) has been found in the sex-determining region on the Y chromosome of the teleost medaka fish, Oryzias latipes. Functional and expression analyses of DMY show it to be the leading candidate for the male-det...

متن کامل

Cloning and developmental expression patterns of Dlx2, Lhx7 and Lhx9 in the medaka fish (Oryzias latipes)

We have isolated three homeodomain and LIM-homeodomain developmental transcription factors from the medaka fish (Oryzias latipes): OlDlx2, OlLhx7, and OlLhx9, and we have studied their expression patterns in the developing and adult brain. This analysis showed that OlDlx2 and OlLhx7 (together with OlNkx2.1b) delineate the subpallial divisions of the medaka telencephalon, and that OlLhx9 exhibit...

متن کامل

Governing sex determination in fish: regulatory putsches and ephemeral dictators.

In contrast to the rather stable regulatory regimes established over more that 100 million years in birds and mammals, sex determination in fish might frequently undergo evolutionary changes bringing the sex-determining cascade under new master sex regulators. This phenomenon, possibly associated with the emergence of new sex chromosomes from autosomes, would explain the frequent switching betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2004